

THE ART OF DISTRIBUTED DEVELOPMENT OF

MULTI-LINGUAL THREE-TIER INTERNET APPLICATIONS

Dragomir D. Dimitrijević

Consultant

I INTRODUCTION

In this article we describe the author's experience with the

unconventional development of Internet applications. They

were developed for Credit Suisse bank as a joint cooperation

between the bank as the customer, KJsoft GmbH as their

contractor, and the author as a subcontractor. Software was

developed in a distributed fashion without any physical access

to the production site.

Due to the very strict bank's security rules, previously

developed applications used by the newly developed

applications were not available for installation on the remote

development site. For that reason, simple stubs were

developed to emulate the behavior of previously developed

but unavailable, CORBA (Common Object Request Broker

Architecture) and database applications. In addition, the

application had to support multiple spoken languages, thus

the developed software had to be internally independent of

any particular spoken language.

In this article we describe a number of usefull tips and tricks

of trade that may be helpful to an intendend reader. In Section

II, we describe the three-tier system architecture. In Sections

III and IV we describe development of CORBA and database

portions of the applications. In Section V, tips on multi-

lingual application development are given. The conclusion is

given in Section VI.

II SYSTEM ARCHITECTURE

Figure 1 depicts the three-tier system architecture typical for

Internet applications. Users use web browsers to access

various online banking applications via the Internet.

Applications are executed by a web server. An example of

such an application is quotation of currency exchange rates.

The user selects desired currencies and a branch of bank on a

query input form and submits the query. The web server

accepts the query, processes it, and returns the response back

to the user's browser. Depending on the particular application,

the web server may consult with a CORBA application server

and/or a database server. The response is returned in the

user's language of choice (German, French, Italian, or

English).

Internet
User

Web server

Database server

Database

CORBA server

Figure 1: System architecture

Per bank's internal software development standard, all

Internet applications, executed by the web server, are written

using Java™ programming language and Java servlets.

Although people from the Microsoft™ camp will most

certainly disagree, this is a de facto standard for writting

serious Internet applications.

All servers in the production environment run Sun

Microsystems Solaris™ UNIX operating system. The web

server is NES™ (Netscape Enterprise Server) with the

addition of JRun™ engine for running Java servlets. The

database server is Oracle™. The CORBA application server

is IONA OrbixWeb™. CORBA clients use an internally

developed API (Application Programming Interface) and

wrapper Java clases developed on top of OrbixWeb.

The challenge in this project was to develop software in a

distributed fashion without any physical presence at the

production site, while still adhering to the very strict bank's

security rules.

First, per bank's development protocol, software developers

do not have direct physical access to the production system.

Instead, the developed software is handed over to the

production system staff for final testing and installation on the

production system.

Second, for security reasons, the already developed software

cannot be taken out of the bank's premises for installation on

a remote development system. It means that copies of the

database and the applications running on the CORBA server

were not available at the development site. Instead, stubs had

to be developed to emulate behavior of CORBA and database

servers.

The entire software described in this article was developed on

a single Windows NT Workstation™. The CORBA server

was one that comes with the JDK (Java Development Kit).

The database was Microsoft Access™. The web server was

Apache with the JServ engine for running Java servlets.

Software was developed usjing Oracle JDeveloper™ IDE

(Integrated Development Environment). Obviously, the

development and the production environments were very

different, which was one of the development challenges.

The only contact between the development and the

production sites was over the phone and via e-mail, thus

software was developed solely in a telecommuting fashion.

Once the database and CORBA stubs were set-up on the

development site, and a basic skeleton of the application was

set-up on the production site, it was easy to gradually build

the application on the development site and test it on the

production site. Software was shipped via e-mail in the form

of compiled JAR (Java Archive) files and static text, HTML

(Hyper-Text Markup Language), and graphic files.

Throughout the rest of this article, we will describe some of

the tricks of trade used to overcome the development

challenges.

III CORBA IMPLEMENTATION

CORBA standard was, at least in theory, developed to

standardize invocation of remote procedures in networks.

However, this is far from reality. In theory, the development

of code which invokes remote, already developed procedures,

involves the following steps:

1. Use the remote procedure's IDL (Interface Definition

Language) specification, and an IDL compiler to

generate API stub code for invoking remote procedures

in the desired programming language (Java, C, C, C++).

2. Develop code for initiating the ORB (Object Request

Broker) within the application.

3. Develop code for invoking remote procedures from

within the application.

However, in practice, there are a number of problems:

- CORBA applications developed in different

programming languages may have problems talking to

each other even when the development tools and the

underlying libraries are produced by the same vendor.

- Java API specification is developed to standardize API

and IDL stubs of all Java applications, thus maximize

code portability. However, vendors of CORBA

development tools like IONA did not adhere to this

standard, so software developed using JDK and it's IDL

compiler and CORBA name server cannot run using

IONA's CORBA name server.

- Even different CORBA development tools of the same

vendor, like IONA's OrbixWeb and Orbix 2000, are not

mutually compatible, and require different application

code.

Fortunately, the differences and incompatibilities in the

application code apply mostly to a relatively small portion of

the ORB initiation code. For that reason, it was possible to

develop code using JDK CORBA environment and port it to

the OrbixWeb production environment as follows:

1. Use JDK IDL compiler to compile IDL specification and

generate Java stubs for the development environment.

2. Develop and test the application using the ORB initiation

code appropriate for the JDK environment.

3. Use OrbixWeb IDL compiler to compile IDL

specification and generate Java stubs for the OrbixWeb

production environment.

4. Replace the ORB initiation code with the code needed

for the OrbixWeb production environment.

Once this porting procedure is established, delivery of code

modification is very efficient with a little help of code

building scripts.

The other problem with the development of CORBA code

was unavailability of the original CORBA application server.

This problem was solved by developing a simple stub

application server which emulates responses of the real

application server. The stub server loads test data from a text

file and upon request passes it to the CORBA client, i.e., to

the requesting servlet in this case.

IV DATABASE IMPLEMENTATION

Portability of JDBC (Java Database Connection) code is

significantly better than CORBA related code. As long as

database operations are restricted to standard SQL

(Structured Query Language) and free of triggers and stored

procedures, developed Java code runs on virtually any

database. Porting to a different database type performed by

simply specifying a differen database source and driver in a

database configuration textual file such as:

JDBCDriver = sun.jdbc.odbc.JdbcOdbcDriver
JDBCConnectionURL = jdbc:odbc:DbSource

The above two lines define database source named DbSource

defined in the Windows ODBC (Open Database Connection)

manager and the Sun Microsystems' JDBC-ODBC bridge

database driver. By modifying the two lines in the database

configuration file, one can switch from, e.g., Microsoft

Access database at the development site to Oracle database at

the production site. As a matter of fact, this approach is so

convinient that the author used it in many other Java projects

that involved databases. Microsoft Access allows quick

prototyping and modification. Once the database design is

finalized, the database can be ported to Oracle using an

Oracle database porting tool. In addition, this approach

allows the use of a laptop computer for demonstration of

work in progress at a customer's site.

This approach was used in the project described in this article

to create the database stub which emulates behavior of the

database at the production site. Since the application used a

small subset of tables and fields in the actual database,

replication of their structure at the development site was

quick and easy.

When it comes to database Internet applications, another trick

worth mentioning is the use of database connection pools. A

typical servlet-based Internet application that uses a database

involves three steps when a servlet is invoked: connecting to

the database, accessing data, and disconnecting from the

database. Connecting to the database is a time-consuming

operation. For that reason, pools of pre-established database

connections are maintained. Each servlet maintains a

connection pool which consists of a configurable number of

pre-estabkished database connections. Instead of waiting for

the connection to be established, a database request takes an

already established connection from the pool, uses it, and

later returns it back to the pool for further reuse. The use of

connection pools significantly improves the application's

performance. Oracle's JDeveloper IDE comes with a library

that implements a connection pool manager. However, the

author uses one of many connection pool implementations

available for download from the Internet.

V MULTI-LINGUAL IMPLEMENTATION

Software described in this article had to support four

languages, i.e., the user had to be able to submit queries and

receive responses in the selected preferred language. Figure 2

depicts a general appearance of the user interface displayed in

the user's web browser.

English

Italian

French

German

Query form

Query response frame

language = 4

Figure 2: General appearance of the user interface

The user interface consists of two HTML frames. The upper

frame is a static HTML page, written in the user's language of

choice. It contains the language selection menu on the left

side, and the query input form on the right side. The query

form contains a hidden form parameter language which

defines the form's language. For example, language=4

corresponds to English language. This parameter is submitted

together with other query parameters so that the servlet knows

it has to respond in English language.

The lower frame contains response to user's queries.

Responses are dynamically generated by Java servlets.

Figure 3 shows the organization of Internet directories which

contain different file types and files which correspond to

different languages. A good initial organization of directories

allows easy maintenance at a later time.

root

deservlets fr it enappletsfigures

Figure 3: Organization of the Internet directories

The root directory contains static HTML files common to

all languages such as the frameset HTML file which holds the

two frames shown in Figure 2. The figures directory

contains graphic files common to all languages. The

applets directory contains Java applet classes and JAR

files that contain applets.

The servlets directory is not a physical directory. It is a

virtual directory mounted onto the web server's directory

system so a servlet is invoked as it is in a real directory such

as http://www.aaa.ch/servlets/rates?p=a.

The rates is a servlet's external name followed by zero or

more query parameters, depending on the query and the

method used to invoke the servlet (PUT or GET).

The four remaining directories, de, fr, it, and en contain

static HTML and graphic files which correspond to German,

French, Italian, and English languages respectively. Names

and functions of files they contain are same except that their

contents are written in different languages.

In order to make software internally independent of any

particular language, all language-dependent strings are

referenced using their internal language-independent

symbolic names. To achieve this, we used one instance of

java.util.Properties class ([1]) for each language

known to the application. The Properties class contains a

set of name-value pairs of strings. A method

getProperty(String name) and the string's symbolic

name are used to retreive string in a specific language.

An instance of the Properties class may be loaded from a

plain text property file which contains lines that have a form

name=value. In order to improve readability of property

files, we used a convention that property names have a form

function.name. For example, properties

title.RPT_TITLE=Currency Exchange Rates
label.COUNTRY=Country
code.0119=Yugoslavia
error.DB_ERROR=Database error

define a report title, a label, a country name internally

referenced using country's ISO (International Standards

Organization) currency code, and an error message. Property

files for other languages have the right-hand side of the

equality sign translated to the corresponding language.

During the initialization, an application loads one property

file (vocabulary) for each language it supports, and creates an

array of instances of Properties that correspond to

supported languages. Language-specific strings are retreived

using the internal string name and the language code received

from an HTML query form. The following code may be ised

to translate internal language-independent string names to

language-specific strings:

private Properties[] vocab[4];
String getString(String name, int lang){
 String r;
 if (lang>=1 && lang<=4) {
 r=vocab[lang-1].getProperty(name);
 if (r!=null) return r;
 }
 // Return untranslated name if
 // undefined language or
 // undefined string requested
 return name;
}
String getTitle(String name, int lang){
 return getString("title."+name, lang);
}
String getLabel(String name, int lang){
 return getString("label."+name, lang);
}
String getCountry(String name, int lang){
 return getString("code."+name, lang);
}
String getError(String name, int lang){
 return getString("error."+name, lang);
}

Using the above code, the four examples of strings may be

translated to English as:

int lang=4;
String t=getTitle("RPT_TITLE", lang);
String l=getLabel("COUNTRY", lang);
String c=getCountry("0119", lang);
String e=getError("DB_ERROR", lang);

Each of the four methods invoked above will append an

appropriate prefix to the internal string name and retreive its

translation from the instance of Properties vocabulary

which corresponds to English language code. This approach

allows clean and orderly control of application's multi-lingual

behavior. Furthermore, even in case of single-language

applications, fine tunning is easier since strings displayed in

browsers are not hard-coded, thus they are accessible for

quick modification and customization in property files.

The property files may be stored in and retreieved from the

file system. This approach allows customers, i.e., system

administrators of the production site, to edit them and fine

tune appearance of strings in multiple languages. The other

approach is to put property files in the application's class

hierarchy and pack the entire class hierarshy in a JAR file.

Instances of Properties are then loaded as application's

resources. In such a way, all application's classes and

propertiy files can be delivered as a single JAR file which

simplifies delivery and installation of the application. In case

of multi-lingual applets, this is the preferred way to deliver

applets to the user's browser.

VI CONCLUSIONS

In this article we have described the author's experience with

the distributed development of multi-lingual three-tier Java/

CORBA/database applications. The challenge was to develop

applications at a remote development site in a purely

telecommuting fashion, i.e., without any physical access to

the production site, and in some cases without all software

and hardware components needed to replicate the production

system at the development site. We believe that tips and tricks

of trade described in this article could be of great use to other

software developers.

REFERENCES

[1] -, Java™ 2 Platform, Standard Edition, v1.2.2 API

Specification.

Abstract: In this article we describe author's experience with

the distributed development of multi-lingual three-tier Java/

CORBA/database Internet applications. We believe that the

described tips and tricks of trade may be of great use to

readers who are involved with Java applications development.

THE ART OF DISTRIBUTED DEVELOPMENT OF

THREE-TIER INTERNET APPLICATIONS, Dragomir

D. Dimitrijević.

